71 research outputs found

    The finite tiling problem is undecidable in the hyperbolic plane

    Full text link
    In this paper, we consider the finite tiling problem which was proved undecidable in the Euclidean plane by Jarkko Kari in 1994. Here, we prove that the same problem for the hyperbolic plane is also undecidable

    A weakly universal cellular automaton in the pentagrid with five states

    Full text link
    In this paper, we construct a cellular automaton on the pentagrid which is planar, weakly universal and which have five states only. This result much improves the best result which was with nine statesComment: 23 pages, 21 figure

    Array P Systems and t−Communication

    Get PDF
    The two areas of grammar systems and P systems, which have provided interesting computational models in the study of formal string language theory have been in the recent past effectively linked in [4] by incorporating into P systems, a communication mode called t−mode of cooperating distributed grammar systems. On the other hand cooperating array grammar systems [5]and array P systems [1] have been developed in the context of two-dimensional picture description. In this paper, motivated by the study of [4], these two systems are studied by linking them through the t−communication mode, thus bringing out the picture description power of these systems

    P Systems with Minimal Left and Right Insertion and Deletion

    Get PDF
    In this article we investigate the operations of insertion and deletion performed at the ends of a string. We show that using these operations in a P systems framework (which corresponds to using specific variants of graph control), computational completeness can even be achieved with the operations of left and right insertion and deletion of only one symbol

    On insertion-deletion systems over relational words

    Full text link
    We introduce a new notion of a relational word as a finite totally ordered set of positions endowed with three binary relations that describe which positions are labeled by equal data, by unequal data and those having an undefined relation between their labels. We define the operations of insertion and deletion on relational words generalizing corresponding operations on strings. We prove that the transitive and reflexive closure of these operations has a decidable membership problem for the case of short insertion-deletion rules (of size two/three and three/two). At the same time, we show that in the general case such systems can produce a coding of any recursively enumerable language leading to undecidabilty of reachability questions.Comment: 24 pages, 8 figure

    Small Universal Accepting Networks of Evolutionary Processors with Filtered Connections

    Full text link
    In this paper, we present some results regarding the size complexity of Accepting Networks of Evolutionary Processors with Filtered Connections (ANEPFCs). We show that there are universal ANEPFCs of size 10, by devising a method for simulating 2-Tag Systems. This result significantly improves the known upper bound for the size of universal ANEPFCs which is 18. We also propose a new, computationally and descriptionally efficient simulation of nondeterministic Turing machines by ANEPFCs. More precisely, we describe (informally, due to space limitations) how ANEPFCs with 16 nodes can simulate in O(f(n)) time any nondeterministic Turing machine of time complexity f(n). Thus the known upper bound for the number of nodes in a network simulating an arbitrary Turing machine is decreased from 26 to 16

    Complex dynamics of elementary cellular automata emerging from chaotic rules

    Get PDF
    We show techniques of analyzing complex dynamics of cellular automata (CA) with chaotic behaviour. CA are well known computational substrates for studying emergent collective behaviour, complexity, randomness and interaction between order and chaotic systems. A number of attempts have been made to classify CA functions on their space-time dynamics and to predict behaviour of any given function. Examples include mechanical computation, \lambda{} and Z-parameters, mean field theory, differential equations and number conserving features. We aim to classify CA based on their behaviour when they act in a historical mode, i.e. as CA with memory. We demonstrate that cell-state transition rules enriched with memory quickly transform a chaotic system converging to a complex global behaviour from almost any initial condition. Thus just in few steps we can select chaotic rules without exhaustive computational experiments or recurring to additional parameters. We provide analysis of well-known chaotic functions in one-dimensional CA, and decompose dynamics of the automata using majority memory exploring glider dynamics and reactions

    Solving 2D-pattern matching with networks of picture processors

    Get PDF
    We propose a solution based on networks of picture processors to the problem of picture pattern matching. The network solving the problem can be informally described as follows: it consists of two subnetworks, one of them extracts simultaneously all subpictures of the same size from the input picture and sends them to the second subnetwork. The second subnetwork checks whether any of the received pictures is identical to the pattern. We present an efficient solution based on networks with evolutionary processors only, for patterns with at most three rows or columns. Afterwards, we present a solution based on networks containing both evolutionary and hiding processors running in O(n+m+kl+k) computational (processing and communication) steps, where the input picture and the pattern are of size (n,m) and (k,l), respectively

    Computing in the fractal cloud: modular generic solvers for SAT and Q-SAT variants

    Full text link
    Abstract geometrical computation can solve hard combinatorial problems efficiently: we showed previously how Q-SAT can be solved in bounded space and time using instance-specific signal machines and fractal parallelization. In this article, we propose an approach for constructing a particular generic machine for the same task. This machine deploies the Map/Reduce paradigm over a fractal structure. Moreover our approach is modular: the machine is constructed by combining modules. In this manner, we can easily create generic machines for solving satifiability variants, such as SAT, #SAT, MAX-SAT

    An Approach to the Bio-Inspired Control of Self-reconfigurable Robots

    Get PDF
    Self-reconfigurable robots are robots built by modules which can move in relationship to each other. This ability of changing its physical form provides the robots a high level of adaptability and robustness. Given an initial configuration and a goal configuration of the robot, the problem of self-regulation consists on finding a sequence of module moves that will reconfigure the robot from the initial configuration to the goal configuration. In this paper, we use a bio-inspired method for studying this problem which combines a cluster-flow locomotion based on cellular automata together with a decentralized local representation of the spatial geometry based on membrane computing ideas. A promising 3D software simulation and a 2D hardware experiment are also presented.National Natural Science Foundation of China No. 6167313
    corecore